DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90.

نویسندگان

  • L R Kelland
  • S Y Sharp
  • P M Rogers
  • T G Myers
  • P Workman
چکیده

BACKGROUND To our knowledge, 17-allylamino,17-demethoxygeldanamycin (17AAG) is the first inhibitor of heat shock protein 90 (Hsp90) to enter a phase I clinical trial in cancer. Inhibition of Hsp90, a chaperone protein (a protein that helps other proteins avoid misfolding pathways that produce inactive or aggregated states), leads to depletion of important oncogenic proteins, including Raf-1 and mutant p53 (also known as TP53). Given its ansamycin benzoquinone structure, we questioned whether the antitumor activity of 17AAG was affected by expression of the NQO1 gene, which encodes the quinone-metabolizing enzyme DT-diaphorase. METHODS The antitumor activity of 17AAG and other Hsp90 inhibitors was determined by use of a sulforhodamine B-based cell growth inhibition assay in culture and by the arrest of xenograft tumor growth in nude mice. DT-diaphorase activity was determined by use of a spectrophotometric assay, and protein expression was determined by means of western immunoblotting. RESULTS In two independent in vitro human tumor cell panels, we observed a positive relationship between DT-diaphorase expression level and growth inhibition by 17AAG. Stable, high-level expression of the active NQO1 gene transfected into the DT-diaphorase-deficient (by NQO1 mutation) BE human colon carcinoma cell line resulted in a 32-fold increase in 17AAG growth-inhibition activity. Increased sensitivity to 17AAG in the transfected cell line was also confirmed in xenografts. The extent of depletion of Raf-1 and mutant p53 protein confirmed that the Hsp90 inhibition mechanism was maintained in cells with high and low levels of DT-diaphorase. 17AAG was shown to be a substrate for purified human DT-diaphorase. CONCLUSION These results suggest that the antitumor activity and possibly the toxicologic properties of 17AAG in humans may be influenced by the expression of DT-diaphorase. Careful monitoring for NQO1 polymorphism and the level of tumor DT-diaphorase activity is therefore recommended in clinical trials with 17AAG.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p53 independent radio-sensitization of human lymphoblastoid cell lines by Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin.

Inhibition of heat shock protein 90 (Hsp90) is an attractive modality for cancer therapy. Recent studies presented that an Hsp90 inhibitor, 17AAG (17-allylamino-17-demethoxygeldanamycin), enhanced tumor radio-sensitivity, while this was not observed in normal cells. One of the studies reported that the effect of this drug was only observed in tumor cells carrying the wild-type p53 gene, thus de...

متن کامل

17-Allylamino-17-demethoxygeldanamycin and ritonavir inhibit renal cancer growth by inhibiting the expression of heat shock factor-1.

Our previous study showed that the combination of a histone deacetylase (HDAC) inhibitor and an HIV protease inhibitor is effective against renal cancer cells. Because HDAC inhibition disrupts the chaperon function of heat shock protein (HSP) 90, we hypothesized that the combination of 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor ...

متن کامل

P53-dependent radiosensitizing effects of Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin on human oral squamous cell carcinoma cell lines.

Development of new molecular target therapeutic agents is expected to improve clinical outcome, ideally with efficacy in both single and combined treatment modalities. Because of the potential for affecting multiple signaling pathways, inhibition of the molecular chaperone heat shock protein 90 (Hsp90) may provide a strategy for enhancing tumor cell radiation sensitivity. Therefore, we have inv...

متن کامل

Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells

The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related pro...

متن کامل

Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism.

17-Allylamino-demethoxygeldanamycin (17-AAG), currently in phase I and II clinical trials as an anticancer agent, binds to the ATP pocket of heat shock protein (Hsp90). This binding induces a cellular stress response that up-regulates many proteins including Hsp27, a member of the small heat shock protein family that has cytoprotective roles, including chaperoning of cellular proteins, regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 91 22  شماره 

صفحات  -

تاریخ انتشار 1999